

MORBIDITY AND MORTALITY WEEKLY REPORT

Surveillance Summary

499 Rabies-United States, 1977
Current Trends
Typhoid Vaccination
508 Varicella-Zoster Immune Globulin Epidemiologic Notes and Reports Botulism-California
507 Influenza-New York, California
507 Aseptic Meningitis-Maryland International Notes Yellow Fever-Trinidad

Surveillance Summary

Rabies - United States, 1977

A total of 3,182 laboratory-confirmed cases of rabies were reported in the United States and areas under U.S. jurisdiction (Guam, Puerto Rico, and Virgin Islands) in 1977-36 more cases than for 1976 but approximately 7% below the annual average for the preceding 5 years. Forty-seven states and Puerto Rico reported infected animals; only the District of Columbia, Hawaii, Rhode Island, Vermont, Guam, and the Virgin Islands reported no rabies cases. States reporting over 100 cases were California (434), Texas (389), Minnesota (342), Oklahoma (243), Georgia (210), South Dakota (139), lowa (134), North Dakota (122), and Arkansas (118). Sixteen states reported more cases of rabies in 1977 than in 1976, and 32 states and Puerto Rico reported less. Ninety-seven percent of the reported cases occurred in 7 kinds of animals: skunks, 51%; bats, 20%; raccoons, 9%; cattle, 6%; foxes, 4%; dogs, 4%; and cats, 3%. One case of human rabies was reported. A laboratory technician who worked in the rabies laboratory of the New York Department of Health is surviving with sequelae 1 year after infection (1,2).

Of the total 3,182 rabies cases reported, 2,736 occurred in wild animals (approximately 86% of the total cases) (Figure 1), and 445 occurred in domestic animals (14\%). The major wildlife hosts were skunks (59.6%), bats (23.3%), raccoons (10.3%), foxes (4.5\%), and mongooses (1.4\%).

FIGURE 1. Counties reporting wild animal rabies, 1977

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE / PUBLIC HEALTH SERVICE

Rabies - Continued
Skunks: For the 17th consecutive year, irfected skunks were the animals most frequently reported. States that reported over 100 cases in skunks were Minnesota (260), Texas (257), California (247), Oklahoma (188), and South Dakota (105).

Bats: Forty-three states reported a total of 637 cases of rabies in bats in 1977, 100 fewer cases than in the previous year but 17% higher than the annual average for the preceding 5 -year period. In 12 states the only rabies cases in wildlife that were reported occurred in bats; these states were Colorado, Connecticut, Delaware, Idaho, Maryland, Massachusetts, Mississippi, Nevada, New Hampshire, New Jersey, North Carolina, and Oregon. For the eighth consecutuve year California reported the largest number of cases (166), followed by Colorado (56), and Texas (51). Cases of rabies in bats continued to be more widely distributed than those in any other animal host.

Racoons: Thirteen states reported that 281 cases of rabies had occurred in raccoons, 4 more cases than were reported in the previous year and 97 more than the annual average for the preceding 5 years. This is the highest number of cases ever reported for a year. Georgia (175) and Florida (69) reported 87% of the total cases. Except for an outbreak of 17 cases that occurred in South Carolina, which may have resulted from infected raccoons from Georgia and/or Florida crossing state boundaries, the other cases were scattered and did not appear to be geographically or temporally associated.

Foxes: Eighteen states reported 122 fox rabies cases in 1977, 65 fewer than in 1976 and the lowest total of such cases reported in any year on record. Only 2 states reported foxes as the animals most frequently infected: Alaska and Maine. The states reporting the most cases were Alaska (34), Maine (24), and New York (19).

Other: Various other wildlife species also were reported as positive for rabies in 1977. Thirty-eight cases of mongoose rabies were reported by Puerto Rico, where rabies is enzootic in this species. Other cases occurred in wolves (3), weasels (2), opossums (2), an otter, a mink, a ringtail, and a woodchuck.

Domestic animals: Thirty states and Puerto Rico reported that 445 cases had occurred in domestic animals in 1977, 25 more cases than in 1976 and 31% below the average annual total for the preceding 5 years. Cases occurred in 186 cattle, 120 dogs, 108 cats, 18 horses and mules, 10 sheep and goats, and 3 swine. Generally, cases in domestic animals were reported from areas where rabies is highly endemic in skunks and foxes. Reported by Respiratory and Special Pathogens Br, Viral Diseases Div, Bur of Epidemiology, CDC.

References

1. MMWR 26:183, 1977
2. MMWR 26:249, 1977

A A copy of the report from which these data were derived is available from: CDC. Attn: Chief, Respiratory and Special Pathogens Br, Bur of Epidemiology, Atlanta, Ga. 30333.

Current Trends

Typhoid Vaccination After Flooding

At times of flooding and other natural disasters, the question of the use of typhoid vaccine is raised. Since there is little evidence to indicate an increased risk of typhoid fever following such disasters and because of the infrequency of typhoid in the United States, typhoid vaccination is considered unnecessary following natural disasters in the United States. Even in a typhoid-endemic, developing country, a recent study showed no problem with typhoid following a major earthquake (1). In addition, a vaccination program would not provide universal protection, risks vaccine reaction, often provides

Typhoid Vaccination - Continued

protection after the time of greatest risk, and is an unnecessary expenditure of often scarce emergency health resources.

Of much greater practical importance in disease prevention during natural disasters is boiling water or taking other appropriate measures to insure a safe drinking water supply. Such measures provide immediate protection against typhoid and other waterborne diseases.
Reported by Enteric Diseases Br, Bacterial Diseases Div, Bur of Epidemiology, CDC.

Reference

1. Spencer HC, Campbell CC, Romero A: Disease surveillance and decision-making after the 1976 Guatemala earthquake. Lancet 2:181-184, 1977

Epidemiologic Notes and Reports

Botulism - California

On November 2, 1978, a San Diego County neurologist reported possible botulism in a 48 -year-old housewife of Hispanic descent. The patient had become ill on October 31 with symptoms of nausea, vomiting, diarrhea, increasing general weakness, and lassitude. On November 1, she had been taken to an outpatient medical clinic, where gastroenteritis was diagnosed, and medication was prescribed. She was then sent home. Throughout the day, she continued to have diarrhea; she became weaker and developed ptosis and sore throat. At 1 AM on November 2, she visited an emergency room, complaining of weakness and blurred vision. Myasthenia was suspected; a tensilon test, however, was negative. She was released later that morning to the care of a private physician. He admitted her to a hospital intensive care unit because of severe, progressive, proximal muscle weakness and respiratory difficulty. A consulting neurologist at the hospital suspected botulism. At noon, she underwent nasotracheal intubation and was placed on a mechanical respirator. Botulinal antitoxin was administered about 8 hours later. The next day, she had a tracheostomy.

Prompt investigation by the San Diego County Health Department revealed the source of the problem to be olives that were home-canned in Ensenada, Mexico, and consumed at the San Diego County home of a disabled 80 -year-old woman whom the patient had tended. A visit to the elderly woman's home on November 2 found her to be in good health. However it was learned that a third woman, age 79, had been staying there for several days and was ill. This woman was taken on November 2 to an emergency room in Tijuana with vomiting, ptosis, diplopia, sore throat, dysphagia, and weakness. She refused hospitalization, but her condition worsened, and she was returned to another Tijuana emergency room where she expired. The diagnosis was thought to be heart disease. No specimens were taken for examination.

Clostridium botulinum type A toxin was demonstrated in serum taken from the index patient and studied at the state's Microbial Diseases Laboratory. The home-canned olives also contained type \mathbf{A} toxin.

The 79 -year-old woman had brought the olives from Ensenada on October 26; they were eaten on October 30 and 31 by the 2 women who became ill but not by the 80 -yearold, who remained well. The olives reportedly tasted bad.

On the evening of November 2, Tijuana and Ensenada public health officials were alerted and visited the Ensenada home of the deceased woman. There the remaining jars of home-canned olives were confiscated; some olives from these jars had been consumed

Botulism - Continued

without incident and were reputedly tasty. They had been processed by being soaked in lye for 12-16 hours, than soaked in several changes of water for 8 days, and finally covered with vinegar-salt brine in separate gallon containers. The only difference noted between the olives still in Ensenada and those in San Diego County was the lack of brine covering the San Diego olives.

As of December 11, the 48 -year-old patient remains in stable condition in a community hospital. She no longer needs respiratory assistance.
Reported by D Casillas, MD, R Moncado, MD, PK Raffer, MD. Chula Vista; DG Ramras, MD, RB Redmond, RS, MS, G Renger, BS, RS, WA Townsend, MD, DrPH, San Diego County Health Dept; Dr. A.G. Vera, Mexicali General Hospital; Dr. R. Casteneda, Tijuana Public Health Dept; Dr. T. Cota, Ensenada Public Health Dept: T Midura, PhD, SB Werner, MD, California Dept of Health Services, in the California Morbidity Weekly Report, No. 46, November 24, 1978.
Editorial Note: Although the California-Baja California (Mexico) Binational Health Council has been active for 36 years, in the past 2 years it has intensified its efforts to update its communications network among health officials in both countries. The Council now has very active subcommittees in the areas of emergency medicine, zoonosis, venereal disease, drug dependency, maternal and child health, environmental health, nursing, and epidemiology. The immediate use of this communications network and prompt investigation by public health officials north and south of the border may have prevented further cases of botulism in this outbreak.

TABLE I. Summary - cases of specified notifiable diseases, United States
[Cumulative totals include revised and delayed reports through previous weeks.]

DISEASE	49th WEEK ENDING		$\begin{gathered} \text { MEDIAN } \\ 1973.1977^{\circ} \end{gathered}$	CUMULATIVE, FIRST 49 WEEKS		
	$\text { December } 9 \text {. }$ 1978	$\begin{gathered} \text { Dexember } 10 . \\ 1977^{*} \end{gathered}$		$\begin{gathered} \text { December } 9, \\ 1978 \end{gathered}$	$\begin{gathered} \text { Dacamber } 10, \\ 1977^{\circ} \end{gathered}$	$\begin{gathered} \text { MEDIAN } \\ 1973 \text { 1977* } \\ \hline \end{gathered}$
Aseptic meningitis	103	75	63	5,831	4,446	3,939
Brucellosis	5	3	4	153	213	213
Chickenpox	3,684	2,061	2,834	140.261	177,189	155,815
Diphtheria	-	-	2	72	80	180
Encephalitis: Primary (arthropod-borne \& unspec.)	24	23	23	992	1.150	1.347
Post.infactious	3	2	3	189	198	254
Mepatitis, Viral: Type B	260	393	268	13.879	15.459	11.111
Type A	586	706	1706	27,368	28,921	
Type unspecified	241	223	1706	8,602	B. 368	32,706
Malaria	8	10	8	674	508	396
Measlas (rubacla)	272	170	233	26.177	54,398	26,042
Meningococcal infections: Total	51	32	32	2.208	1.671	1.343
Civilian	51	32	31	2.185	1.660	1,315
Military			-	23	11	26
Mumps	314	402	926	15.622	19,817	53.244
Pertussis	36	69	---	1.922	1.863	
Rubella (German measles)	127	115	123	17,477	19.744	15,883
Tetanus	-	1	2	76	77	85
Tuberculosis	543	555	598	27,442	20.255	29,340
Tularemia	2	1	2	134	152	133
Typhoid fever	7	7	7	487	371	385
Typhus faver, tick barne [Rky. Mi. spotted)	5	2	2	999	1.111	802
Venereal diseases: Gonormea: Civilian	21.421	19.430	19,453	956.230	943,353	943,353
Military	643	662	662	24,289	25.325	27.313
Syphilis, primary \& secondary: Civilian	453	386	397	20,425	19,266	22,536
Matitary	56	3	4	286	292	324
Rabies in animals	51	35	46	2,976	2,885	2.783

TABLE II. Notifiable diseases of low frequency, Urited States

	CLM 1978		CuM. 1978
Anthrax	5	Poliomvelitis: Total	4
Botulism	71	Paralytic	2
Cholera	12	Psittacosis (lowa 1, Ark. 1, Wash. 1, Oreg. 3)	106
Conganital rubella syndrome	25	Rabies in man \dagger	,
Leprosy (Tex. 1, Calif. 3)	150	Trichinosis	48
Leptospirosis	59	Typhus fever, flea-borne (endemic, murine)	38

[^0]TABLE III. Cases of specified notifiable diseases, United States, weeks ending December 9, 1978, and December 10, 1977 (49th week)

REPORTING AREA	ASEPTIC MENIN- GITIS 1978	日RU CEL LOSIS 1978	$\substack{\text { CHICKEN- } \\ \text { FOX }}$ 1978	DIPHTHERIA		ENLEPHALITIS			HEPATITIS (VIRAL), BY TYPE			MALARIA	
						Primary		Postinfectious1978	$\frac{B}{1978}$	$\frac{A}{1978}$	$\begin{array}{\|c\|} \hline \text { Unspecified } \\ \hline 1978 \end{array}$		
				1978	$\begin{aligned} & \text { CuM. } \\ & \text { 1978 } \end{aligned}$	1978	1977*					1978	$\begin{aligned} & \hline \text { CUM } \\ & \text { 1978 } \end{aligned}$
UNITED STATES	103	5	3.694	-	12	24	23	3	260	586	241	8	674
NEW ENGLAND	1	-	572	-	-	1	2	-	10	20	6	1	30
Maine \dagger	1	-	153	-	-	-	-	-	-	4	-	1	2
N.H. \dagger	-	-	-	-	-	-	-	-	-	1	-	-	4
Vt. \dagger	-	-	36	-	-	-	-	-	-	1	-	-	-
Mass.	-	-	167	-	-	-	-	-	2	4	4	-	7
R.I.	-	-	150	-	-	-	-	-	-	4	-	-	5
Comm.	-	-	66	-	-	1	2	-	A	6	2	-	12
MID. ATLANTIC	1 18	-	387	-	1	3	2	-	26	24	23	2	145
Upstate N.Y.	7	-	199	-	-	3	-	-	6	15	10	2	21
N.Y. City	3	-	30	-	1	-	-	-	6	5	6	-	65
N.J. ${ }^{\dagger}$	-	-	NAN	-	-	-	-	-	14	4	7	-	28
Pa .	8	-	158	-	-	-	2	-	NA	NA	NA	-	31
E.N. CENTRAL	8	-	1,145	-	-	3	11	-	36	94	11	-	49
Ohio	-	-	101	-	-	2	6	-	7	27	,	-	8
Ind. \dagger	-	-	-	-	-	-	-	-	2	8	5	-	4
III.	1	-	15	-	-	-	1	-	14	24	2	-	14
Mict.	6	-	692	-	-	1	2	-	12	30	3	-	21
Wis. \dagger	1	-	337	-	-	-	2	-	1	5	1	-	2
W.N. CENTRAL	7	1	683	-	2	3	1	-	18	66	7	-	26
Minn.	-	-	1	-	-	-	-	-	9	19	-	-	4
lowat	-	-	255	-	-	3	1	-	2	1	-	-	-
Mo.	4	-	137	-	1	-	-	-	3	36	-	-	10
N. Dak. \dagger	-	-	15	-	-	-	-	-	-	-	-	-	-
S. Dak.	$-$	-	26	-	-	-	-	-	-	-	-	-	1
Nebr. \dagger	3	1	41	-	1	-	-	-	-	7	-	-	5
Kans.	-	-	208	-	-	-	-	-	4	3	7	-	6
S. ATLANTIC	9	1	315	-	-	3	-	1	77	89	40	-	116
Del.	-	-	4	-	-	-	-	-	-	-	-	-	1
Md.	-	-	70	-	-	1	-	-	14	14	15	-	25
D.C.	-	-	-	-	-	-	-	-	-	3	-	-	6
Va.t	2	-	36	-	-	-	-	1	9	7	8	-	22
W. Va.t	-	-	157	-	-	-	-	-	1	6	-	-	1
N.C.	3	-	NN	-	-	2	-	-	5	5	8	-	10
S.C.	2	-	7	-	-	-	-	-	1	2	2	-	4
Ga. t		-	-	-	-	-	-	-	8	19	-	-	12
Fla.	2	1	41	-	-	-	-	-	39	33	7	-	35
E.S. CENTRAL	2	1	6	-	-	5	1	1	10	19	4	-	6
Ky.	NA	Na	NA	NA	-	NA	-	-	NA	NA	NA	NA	2
Tenn.	-	1	NN	-	-	-	-	-	6	11	4	-	1
Ala.	-	-	4	-	-	2	-	-	3	2	-	-	1
Miss.	2	-	2	-	-	3	1	1	1	6	-	-	2
W.S. CENTRAL	14	2	155	-	1	1	3	-	24	83	A 1	-	32
Ark.	2	-	1	-	1	-	-	-	5	-	15	-	1
La.	1	-	NN	-	-	-	-	-	5	16	2	-	3
Okla. \dagger	-	2	-	-	-	-	-	-	2	3	8	-	1
Tex.	11	-	154	-	-	1	3	-	12	64	56	-	27
MOUNTAIN	6	-	A 7	-	4	-	-	-	6	45	28	-	9
Mont.	-	-	24	-	-	-	-	-	-	1	-	-	-
Idaho	-	-	-	-	-	-	-	-	-	3	-	-	-
Wyo.	-	-	-	-	-	-	-	-	-	-	-	-	-
Colo.	3	-	41	-	2	-	-	-	2	10	4	-	5
N. Mex.	-	-	-	-	-	-	-	-	-	8	-	-	1
Ariz.	-	-	NN	-	1	-	-	-	1	18	22	-	2
Utah	3	-	21	-	-	-	-	-	2	2		-	
Nev.	-	-	1	-	1	-	-	-	1	3	2	-	1
PACIFIC	38	-	334	-	64	5	3	1	53	146	41	5	261
Wash.	5	-	213	-	60	2	-	-	6	46	8	-	8
Oreg.	3	-	1	-	-	1	2	-	2	11	7	-	9
Calit. 1	29	-	-	-	1	2	1	1	45	83	23	4	217
Alaska	-	-	116	-	3	-	-	-	-	-	1	-	4
Hawaii	1	-	4	-	-	-	-	-	-	6	2	1	23
Guam	NA	NA	NA	NA	-	NA	-	-	NA	Na		NA	-
P.R. ${ }^{\text {I }}$	-	-	7	-	-	-	-	-	1	3	6	-	4
V.I.	-	-	-	-	-	-	-	-	-	-	-	-	1
Pac. Trust Terr.	-	-	8	-	-	-	-	-	-	-	6	-	1

TABLE III (Cont.'d). Casas of specified notifiable diseases, United States, weeks ending December 9, 1978, and December 10, 1977 (49th week)

REPORTING AREA	MEASLES (RUBEOLA)			MENINGDCOCCAL INFECTIONS TOTAL			MUMPS		PERTUSSIS	fubella		TETANUS
	1978	CUM. 1978	$\begin{aligned} & \text { CUM. } \\ & \text { 1977* } \end{aligned}$	1978	CUM. 1978	$\begin{aligned} & \text { CUM. } \\ & \text { 1977* } \end{aligned}$	1978	$\begin{aligned} & \text { CUM } \\ & 1978 \end{aligned}$	1978	1978	CUM. 1978	$\begin{aligned} & \text { CUM. } \\ & 1978 \end{aligned}$
UNITED STATES	272	26,177	54.398	51	2,208	1.671	314	15,622	36	127	17.477	76
NEW ENGLAND	4	2,053	2,517	6	127	73	23	870	-	10	794	3
Maine	-	1,319	173	-	13	4	20	567	-	-	155	-
N.H.	-	14	511	1	10	4	-	17	-	-	107	-
V .	1	53	794	-	7	7	-	6	-	5	32	2
Mass.	3	261	641	1	4%	23	1	96	-	5	254	-
R.I.	-	日	64	-	20	2	-	53	-	-	42	-
Cons.	-	328	834	4	41	33	2	131	-	-	204	1
MID. ATLANTIC	7	2. 254	8,529	A	369	228	25	746	3	18	3.091	5
Upstate N.Y.	2	1,425	3,863	3	118	51	10	242	2	11	558	2
N.Y. City	3	394	800	1	82	63	2	163	-	1	147	-
N.J.	-	74	205	2	74	55	10	166	1	-	1.620	-
Pa .	2	361	3,661	2	95	59	3	175	-	6	766	3
E.N. CENTRAL	80	11,389	11,793	4	237	189	162	6,426	:	60	8,725	4
Ohio	-	494	1,861	2	75	69	63	1,296	1	-	1,382	1
Ind. \dagger	-	217	4,369	1	41	15	,	351	-	-	627	,
III.	35	1,271	1,882	-	3 3	61	32	2,311	10	20	1,814	1
Mich.	35	7,893	1,210	1	76	49	32	1,555	5	35	3,316	1
Wis.	1.	1,514	2.472	-	15	16	35	1,213	2	5	1.586	-
W.N. CENTRAL	36	515	9,535	1	78	70	14	2,030	-	10	703	9
Minn.	-	40	2,634	-	23	19	-	22	-	-	130	2
lowat	4	62	4, 318	-	5	1)	-	171	_	1	64	2
Mo.	31	103	1,048	1	32	26	2	1,176	-	4	115	2
N. Dak.	-	211	29	-	3	1	-	17	-	-	82	-
S. Dak.	-	-	75	-	3	6	1	9	-	-	112	1
Nebr.	-	5	214	-	-	2	-	26	-	-	34	-
Kans.	1	94	1.217	-	12	6	11	613	-	5	166	4
S. ATLANTIC	33	5.472	4,712	14	555	376	26	968	7	7	1,076	17
Del.	$\stackrel{ }{*}$	7	22	-	19	23	1	57	-	-	38	-
Md.	-	51	372	-	3 \%	27	2	82	-	-	7	2
D.C.	-	2	14	-	2	1	-	2	_	-	1	2
Va.t	-	2.836	2.751	3	69	36	5	197	-	1	248	1
W. Va.	1	1,966	272	-	17	19	2	187	1	1	337	-
N.C.	-	$12 ?$	65	1	103	77	-	79	-	1	199	3
S.C.	-	199	161	4	41	38	1	19	2	1	30	4
Ga. \dagger	-	36	769	-	62	51	1	71	3	1	2 A	-
Fla.	32	1,153	286	6	204	113	14	282	1	2	188	7
E.S. CENTRAL	-	1.433	2,059	5	193	167	3	1.241	-	1	539	5
Ky.	Na	122	1,191	-	31	32	NA	261	NA	NA	148	2
Tenn.	-	963	739	4	47	45	1	459	-	-	20 A	
Ala.	-	101	79	1	5.$)$	55	-	431	_	1	25	-
Miss.	-	247	50	-	50	35	2	90	-	-	158	3
W.S. CENTRAL	25	1.298	2,205	4	305	314	32	1,946	3	3	967	15
Ark.		16	35	-	23	20	2	620		-	58	1
La.	-	351	8 ?	1	123	133	-	65	-	2	488	2
Okla.	-	19	67	1	21	15	-	4	-	-	17	3
Tex.	25	912	2,021	2	139	141	30	1,257	3	1	404	9
MOUNTAIN	1	265	2.557	1	57	43	12	46.3	1	2	225	4
Mont.	1	1.36	1,163	1	6	7	1	148	-	-	18	-
Idaho	-	1	163	-	5	7	-	22	-	1	3	1
Wyo.	-		19	-	-	?	-	2	-	$\underline{-}$	-	-
Colo	-	37	512	-	3	1	-	109	1	-	49	1
N. Mex.	-	-	257	-	11	11	-	20	-	-	3	-
Arix.	-	57	327	-	15	1)	1	27	-	1	101	-
Utah	-	44	23	-	6	4	10	127	_	-	38	2
Nev.	-	29	¢ 3	-	6	1	-	9	-	-	13	2
PACIFIC	86	1,498	10,491	9	305	211	17	935	4	16	1,357	14
Wash.	3	393	559	3	50	33	3	208	3	5	136	1
Oreg.	65	470	367	2	33	19	3	132	-	8	155	-
Calif.	18	622	9,469	3	207	171	9	552	1	3	1,046	13
Alaska	-	$!$	to	-	10	34	1	13	-	-	8	,
Hawaii	-	12	36	-	5	5	1	$3:$	-	-	12	-
Guam	NA	35	9	-	1	1	NA	39	NA	NA	4	1
P.R.	12	303	1.030	-	$1)$	1	31	1,602	1	-	17	10
V.I.		8	14	-	1	-		1	-	-	1	-
Pac. Trust Terr.	-	53	-	-	1	-	-	15	-	-	2	-

[^1]*Delayed reports received for 1977 dre not shown below but are used to update last year's weekly and cumulative totals.
\dagger The following delayed reports will be reflected in next week's cumulative totals: Measles: Va. -2, Men. inf.: Ind. +2 , Iowa +5 , $\mathrm{Ga} .+2 ;$ Pertussis: $\mathrm{Ga} .+1$ Rubella: $\mathbf{G a}, \mathbf{+ 1}$.

TABLE III \{Cont.'d!. Cases of specified notifiable diseases, United States, weeks ending December 9, 1978, and December 10, 1977 (49th week)

REPORTING AREA	TUBERCULOSIS		tula. REMIA	TYPHOID FEVER		TYPHUS FEVER (Tick-borne) (RMSF)		VENEREAL DISEASES (Civilian)						RABIES (in Animals)			
			gonorrhea			SYPHILIS (Pri. \& Sec.)											
	197B	$\begin{aligned} & \text { cum. } \\ & 1978 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Cum } \\ & \text { 1378 } \end{aligned}$	1978			$\begin{aligned} & \text { CUM } \\ & 1978 \end{aligned}$	1978	$\begin{aligned} & \text { Cum. } \\ & 1978 \\ & \hline \end{aligned}$	1978	$\begin{aligned} & \text { CUM. } \\ & 1978 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1977 \% \end{aligned}$	1978	$\begin{aligned} & \text { Cum. } \\ & 1978 \end{aligned}$	$\begin{aligned} & \text { CuM } \\ & \text { 1977* } \end{aligned}$	$\begin{aligned} & \text { CUM } \\ & 1978 \\ & \hline \end{aligned}$
UNITED STATES	543	27,442	134	7	487	5	999	21.421	956.230	943.353	453	20,425	19,266	2,976			
NEW ENGLAND	16	901	2	-	78	-	13	644	24,308	25,472	21	560	771	96			
Mainet	-	65	-	-	-	-	-	64	2.310	1,946	-	9	28	76			
N.H.	-	15	-	-	5	-	-	21	1,117	1,062	-	5	5	3			
V t.	1	40	-	-	1	-	-	4	587	625	-	3	7	2			
Mass.	13	534	7	-	62	-	5	260	10.605	10,821	19	34 H	534	7			
R.i.	2	68	-	-	4	-	1	55	1,823	1,962	-	24	9	-			
Conn.	-	179	2	-	8	-	7	240	8,166	9.056	2	171	188	8			
MID. ATLANTIC	70	4.23A	6	5	7 C	-	57	2,590	103,916	98,985	83	2,769	2,744	99			
Upsiate N.Y.	8	730	5	-	10	-	31	301	17.459	17.149	7	192	248	64			
N.Y. City	29	1,352	1	5	45	-	4	1,100	39,313	39.204	59	1,930	1,736	-			
N.J.	14	945	-	-	8	-	13	546	19,371	17.721	15	343	361	14			
Pa.	19	1.211	-	-	7	-	9	603	27,773	25,911	2	304	399	21			
E.N. CENTRAL	7 A	4.45b	1	-	39	-	49	3.477	149,314	149.177	50	2,344	1,992	187			
Ohiot	14	832	1	-	7	-	23	914	38,926	39,573	2	433	450	21			
Ind.	6	514	-	-	$?$	-	1	478	15.374	13,855	2	164	150	13			
III.	30	1.681	-	-	17	-	25	1.156	47.619	48.087	27	1,464	1.053	64			
Mich. \dagger	19	1,193	-	-	13	-	-	74.	34,585	34,602	17	220	234	8			
Wis.	9	236	-	-	-	-	-	1 A9	13,110	13,060	2	63	105	81			
W.N. CENTRAL	18	900	27	-	20	1	51	973	48,097	48.958	3	410	424	601			
Minn.	4	153	-	-	7	-	-	125	8, 360	8,754	I	148	147	186			
lowa	5	103	1	-	3	-	1	103	5,328	5,783	-	34	40	127			
Mo.	6	403	22	-	5	-	23	435	21,294	20,094	1	138	160	82			
N. Dak.	-	32	-	-	-	-	1	16	873	916	-	3	3	98			
S. Dak.t	1	71	-	-	-	-	7	38	1,634	1.502	-	3	9	69			
Nebr.	2	25	-	-	1	1	12	37	3,438	4,240	1	14	25	7			
Kans.t	-	113	4	-	4	-	7	122	1,465	7,669	-	70	40	32			
S. ATLANTIC	162	5,978	10	1	64	4	535	5.541	231,495	231.128	98	5,333	5,220	470			
Del.	2	54	-	-	3	-	5	119	3,33日	3,121	-	13	20	3			
Md. ${ }^{+}$	19	892	5	-	11	-	105	778	24,946	28.961	5	406	310	-			
D.C.	-	297	-	-	1	-	1	330	15,689	15.173	6	408	522	-			
Va .	67	680	5	-	\bigcirc	-	111	493	22,595	23,978	1	446	516	14			
W. Va.	6	220	-	-	7	-	11	74	3,200	3,240	-	30	5	12			
N.C. ${ }^{\text {+ }}$	23	916	-	-	7	2	199	590	32,832	34,832	7	569	690	14			
S.C.	13	515	-	-	9	-	56	486	22,814	21,911	3	271	236	113			
Ga.	-	830	-	-	4	2	47	1,155	45,099	44,366	32	1,348	1,189	279			
Fla. \dagger	32	1,574	-	1	21	-	-	1,558	55,982	55,546	38	1,842	1,732	35			
E.S. CENTRAL	31	2,601	7	-	10	-	180	1,303	80,640	83,144	27	1.079	747	155			
Ky.	NA	593	3	NA	2	NA	42	NA	10.597	11,224	NA	141	106	73			
Tenn.	11	790	3	-	3	-	111	290	29,493	33,328	19	370	237	31			
Ala.	10	632	1	-	3	-	13	601	23,326	22,983	4	190	160	51			
Miss.	10	586	-	-	$?$	-	14	412	17,224	15,604	4	378	244	-			
W.S. CENTRAL	R6	3.288	64	-	58	-	99	2,828	127,084	123,001	109	3.310	2,731	877			
Afk.	6	379	40	-	9	-	16	240	9,405	8,984	2	70	64	146			
La. 1	21	587	6	-	4	-	2	442	20.836	18,257	21	693	607	22			
Okla.	b	326	12	-	5	-	54	336	12,059	11,536	-	89	78	182			
Tex.	53	1.996	6	-	40	-	27	1.310	84,784	81,224	86	2,458	1,982	527			
MOUNTAIN	17	829	12	-	2 G	-	11	939	36.727	38,183	6	453	401	112			
Mont.	-	58	-	-	3	-	2	51	2.049	2,022	-	9	6	19			
Idaho	-	31	3	-	5	-	3	14	1.508	1.727	-	13	12	-			
Wyo.	1	15	2	-	-	-	4	16	908	906	-	4	3	-			
Colo.	-	106	1	-	4	-	2	224	10,148	9,984	4	147	118	38			
N. Mex.	3	132	-	-	2	-	-	56	5.252	5,631	1	81	84	25			
Ariz.	6	374	1	-	4	-	1	296	9.529	10.483	-	105	151	23			
Utaht	4	40	3	-	1	-	$\bar{\square}$	72	2,010	2.310	-	13	11	7			
Nev.	3	73	-	-	1	-	2	83	5,323	5,150	1	76	16	-			
PACIFIC	65	4,251	7	1	12日	-	4	3.356	154.649	148.305	56	4,167	4.236	379			
Wash. \dagger	NA	273	-	-	7	-	1	196	12.539	11.40 t	NA	213	247	2			
Oreg.	3	176	4	-	1	-	2	284	10,490	10.250	1	161	134	12			
Calif.	56	3.237	3	1	139	-	1	2,563	124.129	118.715	54	3,740	3,791	357			
Alaska	-	60	-	-	-	-	-	154	4.794	4.904	-	12	27	-			
Hawaii	6	459	-	-	11	-	-	54	2,697	3,030	I	41	37	-			
Guam	Na	54	-	NA	-	NA	-	Na	123	207	Na	-	2	-			
P.F.	11	369	-	-	3	-	-	25	2,075	2,986	14	476	517	36			
V.I.	-	4	-	-	2	-	-	7	199	208	1	17	9	9 -			
Pac. Trust Terr.	-	11	-	-	-	-	-	6	63	-	-	-	-				

A
NA: Not available

- Delayed reports received for 1977 are not shown below but are used to update last year"s weekly and curmulative totals.
\dagger The following delayed reports will be reflected in next week's cumulative totals: TB: Mich. -1, Kans, - 2, Md. -11, N. C. - 3, La. +20, Utah +3, Wash. +34: GC: Maine -1 civ., Fia. +938 civ. +9 mil., Wash. +114 mil: Syphilis: Fla. +39 civ., Wash. +28 civ. +1 mil; An. rabies: Ohio $+1,5$. Dak. +16 .

TABLE IV. Deaths in 121 U.S. cities,* week ending
December 9, 1978 (49th week)

REPORTING AREA	ALL CAUSES, gY AGE (YEARS)					Pg I ${ }^{\circ}$ TOTAL	REPORTING AREA	all causes, by age (years)					$\begin{aligned} & \text { Pg I }{ }^{\circ *} \\ & \text { LOTAL } \end{aligned}$
	$\underset{\text { AGES }}{\text { ALL }}$	≥ 65	45.64	$25-44$	<1			$\begin{gathered} \text { ALL } \\ \text { AGES } \end{gathered}$	≥ 65	4564	25-44	<1	
NEW ENGLAND	861	436	134	45	24	28	S. ATLANTIC	1,329	789	331	98	58	50
Boston, Mass.	176	103	30	14	10	13	Atlanta, Ga.	149	76	47	14		3
Bridgeport. Conn.	43	28	11	2	1	3	$\mathrm{Ba} \mid$ rimore, Md.	137	91	36	5	3	1
Cambridge. Mass.	21	16	4	1	-	2	Charlotte, N.C.	67	39	13	6	4	4
Fall River. Mass.	29	19	6	3		-	Jacksonville, Fla.	87	52	19	7	5	4
Hartford, Conn.	53	31	9	6	6	1	Miami, Fla.	110	53	34	8	13	-
Lowell. Mass.	36	27	7	2	-	1	Norfolk. Va.	52	33	14	2	2	3
Lymn, Mass.	24	18	4	1	-	-	Richmond, Va.	78	45	21	5	2	5
New Bedford, Mass.	19	12	5	-	2	1	Savannah, Ga.	47	26	17	4	-	2
New Haven, Conn.	50	33	7	6	2	1	St. Petarsburg. Fla.	98	83	12	1	1	5
Providence, R.I.	75	50	16	1	2	6	Tampa, Fla.	63	44	13	3	2	5
Somerville, Mass.	12	A	2	1	-	-	Washington, D.C.	398	228	93	40	21	16
Springfield, Mass.	49	37	8	4	-	1	Wilmington, Del.	41	19	12	3	5	2
Waterbury, Conn.	22	19	2	-	-	-							
Worcester, Mass.	57	35	14	4	2	2					47		15
							E.S. CENTRAL		387			21	
							Eirmingham, Ala.	105	55	33	5	4	1
MID. ATLANTIC	2.790	1,515	5)4	150	63	77	Chattanooga, Tenn.	43	24	13	4	2	3
Albany, N.Y.	55	33	13	2	2	2	Knoxville, Tenn.	46	28	10	5	2	-
Allentown, Pa.	21	13	5	2	-	-	Louisville, Ky.	128	66	36	12	8	6
Buffalo, N.Y.	150	174	32	10	2	11	Memphis. Tenn.	154	100	40	12	-	-
Camden, N.J.	29	22	2	-	1	-	Mobile. Ala.	35	18	11	3	1	1
Elizabeth, N.J.	22	16	3	2	-	1	Montgomery, Ala.	50	35	12	2	-	1
Eria, Pa, \dagger	40	32	8	2	-	4	Nashville, Tenn.	109	6.1	35	4	4	3
Jersey City, N.J.	42	30	7	1	2	2							
Newark, N.J.	54	29	14	5	3	3		1.302		357	99	71	41
N.Y. City, N.Y.	1,513	978	340	108	40	38	W.S. CENTRAL		697				
Paterson, N.J.	42	30	5	4	3	3	Austin, Tex.	50	28	13	4	3	4
Philadelphia, Pa. \dagger	290	186	74	12	13	11	Baton Rouge, La	32	20	9	1	1	4
Pittsburgh, Pa. ${ }^{\text {t }}$	34	26	7	-	-	1	Corpus Christi, Tex.	42	23	12	4	-	2
Reading, Pa.	35	27	7	1	-	2	Dallas, Tex.	221	116	66	17	18	5
Rochester, N.Y.	116	88	19	3	3	8	El Paso, Tex.	72	27	19	2	5	4
Schenectady, N. Y.	28	13	5	4	-	-	Fort Worth, Tex.	4日	58	18	8	2	-
Scranton, Pa. \dagger	31	21	10	-	-	-	Houston, Tex.	307	143	90	34	17	7
Syracuse. N.Y.	103	57	28	3	3	-	Little Rock. Ark.	70	40	15	4	4	2
Trenton, N.J.	33	19	12	1	1	3	New Orleans, La.	114	66	30	9	4	-
Utica, N.Y.	30	23	5	2	-	2	San Antonio, Tex.	161	93	44	я	6	3
Yonkers, N. Y.	26	17	7	2	-	2	Shreveport, La.	44	29	9	4	15	7
							Tulsa, Okla.	101	54	33			
E.N. CENTRAL	2.4411	1.461	627	144	120	68							
Akron, Ohio	73	51	14	4	3	-	MOUNTAIN	570	345	158	30	17	21
Canton, Ohio	47	27	19	-	-	3	Albuquerque. N. Mex.	58	36	12	5	1	0
Chicago, III.	634	350	184	45	30	16	Colo. Springs, Colo.	35	18	12	2	1	4
Cincinnati, Ohio	129	78	28	4	15	4	Denver, Calo.	107	62	33	6	2	3
Cleveland, Ohio	196	94	63	14	1 11	${ }^{9}$	Las Vegas, Nev.	67	32	25	4	1	4
Columbus, Ohio	129	71	33	6	11	5	Ogden, Utah	16	11	$?$	2	1	1
Dayton, Ohio	112	76	28	3	3	2	Phoenix. Ariz.	124	87	29	1	6	-
Detroit, Mich.	293	178	74	19	12	5	Pueblo, Colo.	19	12	6	1	-	2
Evansville, Ind.	44	34	8	-	-	1	Salt Lake City, Utah	to	33	15	7	3	1
Fort Wayne, Ind.	38	26	4	5	1	3	Tucson, Ariz.	84	54	24	2	2	-
Gary. Ind.	19	8	7	1	1	-							
Grand Rapids, Mich.	60	30	20	4	5	1							
Indianapolis, Ind.	149	93	34	7	8	2	PACIFIC	1,987	1,261	456	148	58	68
Madison, Wis.	36	23	7	?	2	2	Berkeley, Calif.	21	12	8	1	-	-
Milwaukee, Wis.	156	113	30	6	2	1	Fresno, Calif.	62	37	15	5	4	3
Paoria, III.	32	20	8	3	1	2	Glendale, Calif.	38	27	9	2	-	1
Rockford, III.	52	38	8	5	-	3	Honolulu, Hawaii	$5)$	32	10	2	2	1
South Bend, Ind.	59	30	19	5	1	8	Long Eeach, Calif.	110	74	28	5	2	3
Toledo, Ohio	114	81	23	5	2	1	Los Angeles, Calif.	663	424	144	58	17	29
Youngstown, Ohio	69	40	16	6	5	1	Oakland, Calif.	84	58	24	2	-	6
							Pasadena, Calif.	35	20	7	3	3	-
							Portland, Oreg.	146	96	29	12	5	5
W.N. CENTRAL	712	483	183	41	37	32	Sacramento, Calif.	66	43	11	0	1	2
Das Moines, Iowa	49	34	13	1	-	5	San Diego, Calif.	113	54	40	19	3	1
Duluth, Minn.	29	20	3	1	4	2	San Francisco, Calif.	181	113	42	13	5	$?$
Kansas City, Kans.	31	16	4	4	1	1	San Jose, Calif.	174	100	41	15	4	7
Kansas City, Mo.	142	80	36	8	4	8	Seatrle, Wash.	147	107	25	9	1	4
Lincoln, Nebr.	30	20	6	-	1	-	Spokane, Wash.	58	39	12	2	3	4
Minneapolis, Minn.	93	56	23	8	5	3	Tacoma, Wash.	34	25	11	-	1	-
Omaha, Nebr.	87	54	19	5	5	1							
St. Louis, Mo.	174	101	4.4	19	15	6							
St. Paul, Minn.	73	4 H	19	?	1	-	TOTAL	12.031	7,374	2,940	802	466	430
Wichita, Kans.	64	45	14	2	1	6							
							Expectad Number	11,104	3.831	2,791	673	413	397

[^2]
Influenza - New York, California

New York City: An influenza $\mathrm{A}(\mathrm{H} 1 \mathrm{~N} 1)$ isolate has been reported from a 73 -year-old individual in New York City, who was hospitalized on November 7 with mild pneumonia that developed 3 days after the onset of an upper respiratory tract infection.

California: Additional isolates of H1N1 influenza A have been obtained in California. The first of these was from a 13-year-old male in Los Angeles, whose illness began on November 17. Three additional isolates were obtained from siblings aged 9, 11, and 12 living in Santa Barbara County. They became ill November 24 and 25. During late October to mid-November, several outbreaks of influenza-like illness were reported among persons less than 25 years old in Ventura and Santa Barbara Counties. By December 11, outbreaks of influenza-like illness had been reported in schools in many areas of the state, with absenteeism in some places reaching 50%.

An influenza isolate from a 22-year-old patient in Los Angeles, who developed an upper respiratory illness on November 18, has been identified as influenza type C by CDC.
Reported by JCherry, MD. University of California at Los Angeles; Los Angeles County Health Dept; California Dept of Health Services; I Spigland, MD, Montefiore Hospital, New York City; JS Marr, MD, New York City Epidemiologist, Bur of Preventable Diseases; Immunization Div, Bur of State Services, and WHO Collaborating Center for Influenza, Bur of Laboratories, CDC.
Editorial Note: Influenza C is rarely isolated, possibly because the virus normally grows only in the amniotic cavity of embryonated hens' eggs, it agglutinates a restricted range of indicator red blood cells (e.g., chicken and human "O," but not guinea pig cells), and it elutes from red blood cells rapidly unless maintained at refrigerated temperatures throughout the hemagglutination test $(1,2)$. On the basis of serologic surveys, the virus is believed to infect the majority of the population during childhood. IlIness is probably less severe than that caused by most influenza A or B viruses, and it has not been recognized as a cause of epidemics in the United States. Little evidence of antigenic drift has been observed in influenza C viruses since the first isolate was obtained in 1947, and no subtypes have been defined. Because expanded surveillance programs in young persons may result in greater frequency of isolation of influenza C than in the past, this virus should be considered when identifying putative influenza-like agents that have been isolated in the amniotic cavity of embryonated eggs and do not appear to be current influenza A or B strains.

References

1. Dowdle WR, Noble GR, Kendal AP: Orthomyxovirus-influenza: Comparative diagnosis unifying concept, in Kurstak E, Kurstak C(eds): Comparative Diagnosis of Viral Diseases, Vol 1. New York, Academic Press, 1977, pp 489-491
2. Taylor RM: Studies on survival of influenza virus between epidemics and antigenic variants of the virus. Am J Public Health 39:171-178, 1949

Aseptic Meningitis - Maryland

An outbreak of aseptic meningitis occurred in a tri-county area of eastern Maryland between July 16 and August 20, 1978. The outbreak peaked during the week of August 7-13. Through active case finding, 55 patients with aseptic meningitis were identified: 25 were considered to be definitive cases, 26 presumptive, and 4 suspected. * Twenty-three

[^3]
Aseptic Meningitis - Continued

of the cases were located in a predominantly non-white area of County $A ; 8$, including adults and children, could be linked epidemiologically to a local day-care center; and 15 were clustered in a group of homes adjacent to a migrant labor camp, which had no contact with the day-care center. Of the 55 patients, 36 (65.5%) were between the ages of 5 and 19 years. The attack rate for meningitis among white patients was 58/100,000 population; that for non-whites was 251/100,000. The overall attack rate was 107/100,000.

From January 1-October 13, 1978, Maryland reported 233 patients with aseptic meningitis, including the 55 from the tri-county area who were identified through active case finding. During the summer outbreak period, the state laboratory reported that 69 of 77 non-polio enteroviral isolates were echovirus 9.

This year's report records the largest number of aseptic meningitis cases associated with a single enteroviral agent since aseptic meningitis became reportable in the state in 1963. During the past 10 years, the average reported number of patients with aseptic meningitis has been 86 per year. The number of echovirus 9 isolations this year is nearly triple the number from 1971, the most recent year with major echovirus 9 activity in Maryland.
Reported by DL Sorley, MD, MPH, State Epidemiologist, Maryland State Dept of Health and Mental Hygiene; Field Services Div, Viral Diseases Div, Bur of Epidemiology, CDC.

Current Trends

Variceila-Zoster Immune Globulin

Varicella-Zoster Immune Globulin (VZIG) continues to be available for immunodeficient children exposed to chickenpox at no cost through the Division of Clinical Microbiology, Sidney Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts (617/732-3121). Former VZIG consultants and the Immunization Division, CDC (404/3293745) are available for consultation regarding alternative modes of therapy.

Since VZIG is still an investigational drug and its supply is limited, several criteria for release apply (Table 1). With regard to the age of patients, VZIG will be made available for certain patients less than 21 years of age on an individual basis. While a request for treatment must be initiated within 72 hours of exposure, treatment may be expected to modify or even prevent disease if started within 96 hours of exposure.
Reported by Sidney Farber Cancer Institute, Boston, Massachusetts; and Immunization Div, Bur of State Services, CDC.

TABLE 1. Five criteria for release of Varicella-Zoster Immune Globulin (VZIG) for the prophylaxis of varicella

1. One of the following underlying illnesses or conditions
A. Leukemia or lymphoma
B. Congenital or acquired immunodeficiency
C. Under immunosuppressive medication
D. Newly born of mother with varicella
2. One of the following types of exposure to varicella or zoster patient
A. Household contact
B. Playmate contact (>1 hour play indoors)
C. Hospital contact (in same 2 - to 4 -room bedroom or adjacent beds in a large ward)
D. Newborn contact (newborn whose mother contracted varicella within 4 days before delivery or within 48 hours after delivery)
3. Negative or unknown prior disease history
4. Age of less than 15 years
5. The request for treatment must be initiated within 72 hours of exposure

Yellow Fever - Trinidad

On November 7, 1978, the Ministry of Health (MIH) for Trinidad and Tobago received reports that monkeys were dying in the Guayaguayare Forest in southeastern Trinidad. Investigations following a similar report in 1959 led to the discovery of an epizootic of yellow fever in monkeys and a single case in man.

Officials of the MIH, Ministry of Agriculture, and Caribbean Epidemiology Center (CAREC) visited the area on November 9 and verified the reports. They arranged for the collection of Haemogogus mosquitoes and for the capture of sick or dying monkeys. Viral studies have shown that the Haemogogus mosquitoes were infected with yellow fever virus. An incompletely identified viral specimen in the brain of a dead monkey is still under study. The MIH immediately began to intensify vaccination, surveillance, and efforts to control Aedes aegypti.

Armed forces and forest workers had previously been vaccinated. The expanded program will include school children and residents who live near forested areas and all MIH personnel. Intensified surveillance for sick and dying monkeys has revealed no substantiated reports of sick monkeys in any other area than the Guayaguayare Forest, and since November 18 there have been no reports of sick monkeys from the Guayaguayare Forest itself. Haemogogus mosquitoes are being collected from the Chaguaramas Forest, located in northern Trinidad, because of the large adjacent urban areas. Although surveillance for clinical cases of yellow fever in humans has been intensified, no human cases have been found. Efforts to control A. aegypti have been increased in the residential areas bordering the forests, and in all hospitals and their immediate environs.
Reported by the Ministry of Health, Trinidad and Tobago, in the Caribbean Surveillance Report, December 1978.
Editorial Note: The forested areas of Trinidad should now be considered enzootic for yellow fever. Travelers to Trinidad who plan to visit the forested areas should be vaccinated for yellow fever. Although A. aegypti, the mosquito vector of urban yellow fever, is present in urban areas of Trinidad, these areas are uninfected. Thus, those who limit their travel to Port of Spain and other urban areas need not be vaccinated.

[^4]p 489 In the table accompanying the "Measles - Texas, 1978" article, the brackets indicating "adequate" and "inadequate" vaccine status were misplaced, giving the false impression that live vaccine at less than 1 year of age is considered to be an adequate vaccination. The corrected table is reprinted below.

CORRECTED TABLE 2. Vaccine histories of 88 measles cases, Harris County, Texas, January-October, 1978

Vaccine status and details		Cases	Percent of total
这苞			
	Live vaccine <1 year	20	23
	Not vaccinated		
	No reason given	9	10
	Less than 15 months old	20	23
	Claimed prior measles illness	4	5
	Other		
	Vaccinated-undocumentable	2	2
	- Unknown or uncertain history	6	

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE PUBLIC HEALTH SERVICE / CENTER FOR DISEASE CONTROL ATLANTA, GEORGIA 30333 OFFICIAL BUSINESS

> Postage and Fees Paid

Director, Center for Disease Control
William H. Foege, M.D.
U.S. Department of HEW

Director, Bureau of Epldemiology
Philip S. Brachman, M.D.
Editor
Michael B. Gregg, M.D.
Managing Editor
Anne D. Mather, M.A.

[^0]: -Delayed reports received for calendar year 1977 are used to update last vear's weekly and cumulative totals.

 * Medians for gonorrhea and syphilis are based on data for 1975.1977
 tThe following delayed report will be added to next week's cumulative total: Rabies in man: Oreg. +1

[^1]: NA: Not available.

[^2]: *Mortality data in this table are voluntarily reported from 12, cities in the United States, most of which have populations of 100,000 or more. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.
 *-Pneumonia and influenza
 tBecause of changes in reporting methods in these 4 Pennsylvania cities, there will now be 117 cities involved in the generation of the expected values used to monitor preumonia and influenza activity in the United States. Data from these $\mathbf{4}$ cities will appear in the tables but will not be included in the totals for the United States and the Middle Atlantic Region.

[^3]: * A definitive case of aseptic meningitis was defined as fever, headache and/or stiff neck, cerebrospinal fluid pleocytosis with negative bacterial cultures, and recovery without antibiotics. A presumptive case was one with fever, headache and/or stiff neck, recovery without antibiotics, known contact of a patient with definitive meningitis, and no lumbar puncture performed. A suspected case was one with fever, headache and/or stiff neck, plus 2 of the following: sore throat, abdominal cramping, and rash; no known contact with meningitis patients; and no lumbar puncture.

[^4]: The Morbidity and Mortality Weekly Report, circulation 78,750, is published by the Center for Disease Control, Atlanta, Georgia. The data in this report are provisional, based on weekly telegraphs to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday.

 The editor welcomes accounts of interesting cases, outbreaks, environmental hazards, or other public health problems of current interest to health officials. Send reports to: Center for Disease Control, Attn: Editor, Morbidity and Mortality Weekly Report, Atlanta, Georgia 30333.

 Send mailing list additions, deletions, and address changes to: Center for Disease Control, Attn: Distribution Services, GSO, 1-SB-36, Atlanta, Georgia 30333. When requesting changes be sure to give your former address, including zip code and mailing list code number, or send an old address label.

